TOSHIBA

TC59S1616AFT-10, -12 TC59S1608AFT-10, -12 TC59S1604AFT-10, -12

PRELIMINARY

524,288 WORDS X 2 BANK X 16 BITS 1,048,576 WORDS X 2 BANK X 8 BITS 2,097,152 WORDS X 2 BANK X 4 BITS SYNCHRONOUS DRAM

Description

TC59S1616AFT is a CMOS synchronous dynamic random access memory organized as 524,288-words x2-banks x16-bits and TC59S1608AFT is a CMOS synchronous dynamic random access memory organized as 1,048,576-words x2-banks x8-bits and TC59S1604FT organized as 2,097,152 words x2-banks x4-bits. Fully synchronous operations are referenced at the positive edges of clock input and can transfer data up to 100M-words per second. These devices are controlled by commands setting. Each bank are kept active so that DRAM core sense amplifiers can be used as a cache. The refresh functions, either Auto Refresh or Self Refresh are easy to use. By having a programmable Mode register, the system can choose the most suitable modes to maximize its performance. These devices are ideal for main memory in applications such as workstations.

Features

- Single power supply of 3.3V±0.3V
- Up to 100MHz clock frequency
- Synchronous operation: All signals referenced to the positive edges of clock
- Architecture: Pipeline
- Organization
 - TC59S1616AFT
 - 524,288 words x 2 banks x 16 bits
 - TC59S1608AFT
 - 1,048,576 words x 2 banks x 8 bits
 - TC59S1604AFT
 - 2,097,152 words x 2 banks x 4 bits
- Programmable Mode register
- Auto Refresh and Self Refresh
- Burst Length: 1,2,4,8, Full page
- CAS Latency: 1,2,3
- Single Write Mode
- Burst Stop Function
- Byte Data Controlled by L-DQM, U-DQM (TC59S1616)
- 4K Refresh cycles/64ms
- Interface: LVTTL, Terminated LVTTL
- Package
- TC59S1616AFT: TSOP44-P-400F
- TC59S1608AFT: TSOP44-P-400F
- TC59S1604AFT: TSOP44-P-400F

Key Parameters

Item		TC59S1616/1608/1604			
		-10	-12		
t _{CK}	Clock Cycle Time (Min.)	10ns	12ns		
t _{RAS}	Active to Precharge Command Period (Min.)	60ns	72ns		
t _{CAC}	Access Time from Read Command (Max.)	26ns	32ns		
t _{AC}	CLK Access Time from CLK (Max.)	7.5ns	9ns		
t _{RC}	Ref/Active to Ref/Active Command Period (Min.)	100ns	120ns		
I _{CC1}	Operation Current (Max.) (Single bank)	80mA	70mA		
I _{CC4}	Burst Operation Current (Max.)	120mA	100mA		

Pin Name

A0 ~ A10	Address
BS	Bank Select
DQ0 ~ DQ3 (TC59S1604)	
DQ0 ~ DQ7 (TC59S1608)	Data Input/Output
DQ0 ~ DQ15 (TC59S1616)	
CS	Chip Select
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable Input
DQM (TC59S1608/1604)	Output dicable/Write Mack
UDQM/LDQM (TC59S1616)	
CLK	Clock inputs
CKE	Clock enable
V _{CC}	Power (+3.3V)
V _{SS}	Ground
V _{CC} Q	Power (+3.3V) (for I/O buffer)
V _{SS} Q	Ground (for I/O buffer)
NC	No Connection

Pin Connection

	TC	595160	4AFT		
	тс	595160	8AFT		TC595
		1 O 4 2 4 3 4 4 4 5 4 6 3 7 3 8 3 9 3 10 3	4 U V55 3 D Q 7 2 D V55Q 1 D Q 6 0 D VccQ 9 D Q 5 8 D V55Q 7 D Q 4 6 D VccQ 5 NCVref	 V ₅₅ NC V ₅₅ Q DQ 3 V _{CC} Q NC V ₅₅ Q DQ 2 V _{CC} Q NC/Vref	V _{CC} Q 1 DQ 0 DQ 1 V _{SS} Q 4 DQ 2 DQ 3 U SSQ 4 DQ 3 U SSQ 4 V _{CC} Q 7 DQ 4 DQ 5 U SSQ 1 0 0 0 0 0 0 0 0 0 0 0 0 0
WE CAS RAS BS A 10 A 0 A 1 A 2 VCC		12 3 13 3 14 3 15 3 16 2 17 2 18 2 19 2 20 2 21 2 22 2	3 DQM 2 CLK 1 CKE 0 DA9 8 DA8 7 DA6 5 DA5 4 3	DQM CLK CKE NC A 9 A 8 A 7 A 6 A 5 A 4 V 55	DQ 6 11 DQ 7 12 VCCQ 13 LDQM 14 WE 15 CAS 16 RAS 16 RAS 19 A 10 20 A 0 21 A 1 22 A 2 23 A 3 22 CAS 10 CAS 12 CAS 1

rc	595	16	16	AF	T
₫	10	o	50	ł	1

18

19

50 VSS 49 DQ 15 48 DQ 14

47 V55Q

40 DQ 9

40 DQ 9 39 DQ 8 38 V_{CC}Q 37 NCVref 36 UDQM 35 CLK 34 CKE

33 D NC

32 A9

32 DA9 31 DA8 30 DA7 29 DA6 28 DA5 27 DA4

26 V55

Absolute Maximum Ratings

Symbol	Characteristic	Rating	Unit	Note
V _{IN} , V _{OUT}	Input, Output Voltage	-0.3 ~ V _{CC} + 0.3	V	1
V _{CC}	Power Supply Voltage	-0.3 ~ 4.6	V	1
T _{OPR}	Operating Temperature	0 ~ 70	°C	1
T _{STG}	Storage Temperature	-55 ~ 150	°C	1
T _{SOLDER}	Soldering Temperature (10s)	260	°C	1
PD	Power Dissipation	1	W	1
I _{OUT}	Short Circuit Output Current	50	mA	1

Recommended DC Operating Conditions (Ta = 0 ~ 70°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
V _{CC}	Power Supply Voltage	3.0	3.3	3.6	V	2
V _{CC} Q	Power Supply Voltage (for I/O Buffer)	3.0	3.3	3.6	V	2
V _{IH}	LVTTL Input High Voltage	2.0	-	V _{CC} + 0.3	V	2
V _{IL}	LVTTL Input Low Voltage	-0.3	-	0.8	V	2
V _{REF}	Reference Voltage	1.35	1.5	1.65	V	2
V _{IH}	T-LVTTL Input High Voltage	V _{REF} + 0.2	-	V _{CC} + 0.3	V	2
V _{IL}	T-LVTTL Input Low Voltage	-0.3	-	V _{REF} - 0.2	V	2
R _T	T-LVTTL Termination Resistor	-	50	0.8	Ω	

Capacitance (V_{CC} = 3.3V, f = 1MHz, Ta = 25°C) TC59S1608/1604AFT

Symbol	Parameter	Min.	Max.	Unit
C.	Input Capacitance (A0 - A10, BS, CS, RAS, CAS, WE, DQM, CKE)	-	4	
9	Input Capacitance (CLK)	-	7	pF
C _O	Input/Output Capacitance	-	5	

TC59S1616AFT

Symbol	Parameter	Min.	Max.	Unit
C.	Input Capacitance (A0 - A10, BS, CS, RAS, CAS, WE, LDQM, CKE)	-	5	
9	Input Capacitance (CLK)	-	8	pF
CO	Input/Output Capacitance	-	6	

Pecommonded DC O	norating Conditions	$(V_{} - 2) = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $	$T_{2} = 0 = 70^{\circ}$
Recommended DC O	perating conditions	$(v_{CC} = 3.3v \pm 0.3v)$	$1a = 0 \sim 70 \text{ C}$

Item		Symbol	-10		-12		Unit	Noto	
		Symbol	Min.	Max.	Min.	Max.	UIIII	Note	
Operating Current	1 bank operation		I _{CC1}		80		70		3
t _{CK} = min, t _{RC} = min Active-Precharge command cycling Without Burst Operation	2 bank interleave operation		I _{CC1B}		140		130		3
Standby Current	CKE = V _{IH}		I _{CC2}		25		22		3
$t_{CK} = min, CS = V_{IH}$ $V_{IH/IL} = V_{IH (min)} / V_{IL (max)}$ bank: inactive state	CKE = V _{IL} (Power Down Mode)		I _{CC2P}		2		2		3
Ctondbu Current	CKE = V _{IH}		I _{CC2S}		3		3		
Standby current $CLK = V_{IL} = min, \overline{CS} = V_{IH}$ $V_{IH/IL} = V_{IH} (min) / V_{IL} (max)$	CKE = V _{IL}	= V _{IL} Low Power Version (AFTL/ASTL)	lasana		1		1		
bank: inactive state	(Power Down Mode)	Standard Products (AFT/AST)	1002PS		2		2	mA	
No Operating Current $t_{CK} = min$ $\overline{CS} = V_{IH (min)}$ bank: inactive state (2 bank)			I _{CC3}		25		22		3,4
			I _{CC4}		120		100		3,4
Auto Refresh Current t _{CK} = min Auto Refresh command cycling			I _{CC5}		80		70		3
Self Refresh Current	Low Power Version (AF	TL/ASTL)			200		200	μA	
CKE = 0.2V	Standard Products (AF	Standard Products (AFT/AST)			1		1	mA	

Item	Symbol	Min.	Max.	Unit	Note
Input Leakage Current ($0V \le V_{IN} \le V_{CC}$ All other pins not under test = $0V$)	I _{I(L)}	-5	5	μA	
Output Leakage Current (Output disable, 0V≤V _{IN} ≤V _{CCQ})	I _{O(L)}	-5	5	μA	
LVTTL Output "H" Level Voltage (I _{OUT} = -2mA)	V _{OH}	2.4	_	V	
LVTTL Output "L" Level Voltage (I _{OUT} = 2mA)	V _{OL}	-	0.4	V	
T - LVTTL Output "H" Level Voltage (I _{OUT} = -2mA)	V _{OH}	V _{REF} + 0.4	-	V	
T - LVTTL Output "L" Level Voltage (I _{OUT} = 2mA)	V _{OL}	-	V _{REF} + 0.4	V	

Electrical Characteristics and Recommended AC Operating Conditions (V_{CC} = 3.3V \pm 0.3V, Ta = 0 ~ 70°C) (Notes 5, 6, 7)

	_	Daromatan		-10		-12			
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit	Note	
t _{RC}	Ref/Active to Ref/Active Command Perio	d	100		120			9	
t _{RAS}	Active to Precharge Command Period	Active to Precharge Command Period		100000	72	100000		9	
t _{RCD}	Active to Read/Write Command Delay Ti	me (Write)	20		24		ns	9, 10	
t _{RCD}	Active to Read/Write Command Delay Time (Read)		30		36		-	9, 10	
t _{CCD}	Read/Write (a) to Read/Write (b) Comma	and Delay Time (Read)	1		1		cycle	9, 10	
t _{RP}	Precharge to Active Command Period		30		36			9	
t _{RRD}	Active (a) to Active (b) Command Period	1	20		24		ns	9	
t _{CAC}	Access Time from Read Command			26		32	-	9	
		CL * = 1	30		36				
t _{WR}	Write Recovery Time	CL * = 2	15		18		-		
		CL * = 3	1CLK + 10		1CLK + 12				
		CL * = 1	30	1000	36		-		
t _{CK}	CLK Cycle Time	CL * = 2	15	1000	18		-		
		CL * = 3	10	1000	12		-		
t _{CH}	CLK High Level Width		3		4		-	11	
t _{CL}	CLK Low Level Width		3		4		-	11	
		CL * = 1		26		32			
t _{AC}	Access Time from CLK	CL * = 2		11		14			
		CL * = 3		7.5		9			
t _{OH}	Output Data Hold Time		3		3		no		
t _{HZ}	Output Data High Impedance Time		2		2		115	8	
t _{LZ}	Output Data Low Impedance Time		0		0				
t _{SB}	Power Down Mode Entry Time		0		0				
t _T	Transition Time of CLK (Rise and Fall)		1		1				
t _{DS}	Data-in Set-up Time		3		3.5				
t _{DH}	Data-in Hold Time		1		1.5				
t _{AS}	Address Set-up Time		3		3.5		-		
t _{AH}	Address Hold Time		1		1.5				
t _{CKS}	CKE Set-up Time		3		3.5				
t _{CKH}	CKE Hold Time		1		1.5				
t _{CMS}	Command Set-up Time		3		3.5		-		
t _{CMH}	Command Hold Time		1		1.5				
t _{REF}	Refresh Time			64			ms		
t _{RSC}	Mode Register Set Cycle Time		20		0		ns	9	

* CL is CAS Latency.

NOTE:

- Stresses greater than those listed under "Absolute 1. Maximum Ratings" may cause permanent damage to the device.
- All voltage are referenced to V_{SS}. 2.
- These parameters depends on the cycle rate and 3. these values are measured by the cycle rate under the minimum value of t_{CK} and t_{RC} . Input signals are changed one time during t_{CK}.
- These parameters depend on the output loading. 4. Specified values are obtained with the output open.
- Power-up sequence is described in NOTE 12. 5.
- AC test conditions 6.

LVTTL Interface

Reference Level of Output Signals	1.4V/1.4V				
Output Load	Reference to the Under Output Load (B)				
Input Signal Levels	2.4V/0.4V				
Transition Time (Rise and Fall) of Input Signals	2ns				
Reference Level of Input Signals	1.4V				

Terminated LVTTL Interface

Reference Level of Output Signals	1.5V/1.5V				
Output Load	Reference to the Under Output Load				
Input Signal Levels	V _{REF} + 0.4/V _{REF} - 0.4				
Transition Time (Rise and Fall) of Input Signals	1ns				
Reference Level of Input Signals	1.5V				

- 7. Transition times are measured between V_{IH} and $V_{\text{IL}}.$ Transition (rise and fall) of input signals are fixed slope. 8
 - $t_{\rm H7}$ defines the time at which the outputs achieve the open circuit condition and are not reference levels.
- 9. These parameters account for the number of clock cycle and depend on the operating frequency of the clock, as follows:

the number of clock cycles = specified value of timing/clock period (count fractions as a whole number).

Latency relationship to frequency (Unit: clock cycles)

CLK	t _{RC}	t _{RAS}	t _{RF}	t _{CAC}	t _{RCD (R)}	t _{RCD (W)}	t _{RSC}	t _{RRD}
period (t _{PRD})	100ns	60ns	30ns	26ns	30ns	20ns	20ns	20ns
≥30.0ns	4	2	1	1	1	1	1	1
≥20.0ns	5	3	2	2	2	1	1	1
≥18.0ns	7	4	2	2	2	2	2	2
≥15.0ns	8	4	2	2	2	2	2	2
≥13.4ns	9	5	3	2	3	2	2	2
≥12.5ns	10	5	3	3	3	2	2	2
≥12.0ns	10	5	3	3	3	2	2	2
≥10.0ns	10	6	3	3	3	2	2	2

-10 Version (calculation with t_{CK} = 10ns ~ 30ns)

-12 Version (calculation with t_{CK} = 12ns ~ 36ns)

CLK	t _{RC}	t _{RAS}	t _{RF}	t _{CAC}	t _{RCD (R)}	t _{RCD (W)}	t _{RSC}	t _{RRD}
(t _{PRD})	120ns	72ns	36ns	32ns	36ns	24ns	24ns	24ns
≥36.0ns	4	2	1	2	3	3	2	1
≥24.0ns	5	3	2	2	4	4	3	2
≥20.0ns	6	3	2	3	5	5	3	2
≥18.0ns	7	4	2	3	5	5	4	2
≥16.0ns	8	4	2	3	6	6	4	2
≥15.0ns	8	5	1	2	3	3	2	1
≥14.4ns	9	5	2	2	4	4	3	2
≥13.4ns	9	6	2	3	5	5	3	2
≥12.0ns	10	6	2	3	6	6	4	2

- 10. The minimum delay time from Active to Read command is different from that of the Write command.
- 11. t_{CH} is the pulse width of CLK measured from the positive edge to the negative edge referenced to V_{IH} (min.). t_{CL} is the pulse width of CLK measured from the negative edge to the positive edge referenced to V_{IL} (max.).
- 12. Power Up Sequence Power up must be performed in the following sequence.
 - Power must be applied to V_{CC} and V_{CC}Q (simultaneously) when all input signals are held "NOP" state. The CLK signals must be started at the same time.

During V_{CC} ramping up to the valid level, DQM and CKE should be the same as V_{CC} to ensure output Hi-z.

- (2) After power-up a pause of 200μseconds minimum is required. Then, it is recommended that DQM signal is held "high" (V_{CC} levels) to ensure DQ output to be in the high impedance.
- (3) Both banks must be precharged.
- (4) Mode register set command must be asserted to initialize the Mode register.
- (5) A minimum of 8 AutoRefresh dummy cycles must be required to stabilize the internal circuity of the device.

Timing Waveform

Command Input Timing

Read Timing

Control Timing of Input Data (TC59S1608/1604AFT)

Control Timing of Output Data (TC59S1608/1604AFT)

Control Timing of Input Data (TC59S1616AFT)

(Clock Mask)

Control Timing of Output Data (TC59S1616AFT)

Mode Register Set Cycle

